Acceder a contenido central

REBIUN - ODA

Detalle del título

Descripción del título

cover Analysis of observed chaoti...
Analysis of observed chaotic data
Springer ©1996

This book develops a clear and systematic treatment of time series of data, regular and chaotic, that one finds in observations of nonlinear systems. The reader is led from measurements of one or more variables through the steps of building models of the source as a dynamical system, classifying the source by its dynamical characteristics, and finally predicting and controlling the dynamical system. The text examines methods for separating the signal of physical interest from contamination by unwanted noise, and for investigating the phase space of the chaotic signal and its properties. The emphasis throughout is on the use of the modern mathematical tools for investigating chaotic behavior to uncover properties of physical systems. The methods require knowledge of dynamical systems at the advanced undergraduate level and some knowledge of Fourier transforms and other signal processing methods. The toolkit developed in the book will provide the reader with efficient and effective methods for analyzing signals from nonlinear sources; these methods are applicable to problems of control, communication, and prediction in a wide variety of systems encountered in physics, chemistry, biology, and geophysics

Electronic books

Monografía

Más detalles del título

Cambiar el formato de visualización

Más detalles

Título:
Analysis of observed chaotic data / Henry D.I. Abarbanel
Editorial:
New York : Springer, ©1996
Descripción física:
1 online resource (xiv, 272 pages) : illustrations
Mención de serie:
Institute for Nonlinear Science, 1431-4673
Bibliografía:
Includes bibliographical references (pages 261-268) and index
Contenido:
1 Introduction -- 1.1 Chatter in Machine Tools -- 2 Reconstruction of Phase Space -- 2.1 Observations of Regular and Chaotic Motions -- 2.2 Chaos in Continuous and Discrete Time Dynamics -- 2.3 Observed Chaos -- 2.4 Embedding: Phase Space Reconstruction -- 2.5 Reconstruction Demystified -- 3 Choosing Time Delays -- 3.1 Prescriptions for a Time Delay -- 3.2 Chaos as an Information Source -- 3.3 Average Mutual Information -- 3.4 A Few Remarks About I(T) -- 4 Choosing the Dimension of Reconstructed Phase Space -- 4.1 Global Embedding Dimension dE -- 4.2 Global False Nearest Neighbors -- 4.3 A Few Remarks About Global False Nearest Neighbors -- 4.4 False Strands -- 4.5 Other Methods for Identifying dE -- 4.6 The Local or Dynamical Dimension dL -- 4.7 Forward and Backward Lyapunov Exponents -- 4.8 Local False Neighbors -- 4.9 A Few Remarks About Local False Nearest Neighbors -- 5 Invariants of the Motion -- 5.1 Invariant Characteristics of the Dynamics -- 5.2 Fractal Dimensions -- 5.3 Global Lyapunov Exponents -- 5.4 Lyapunov Dimension -- 5.5 Global Lyapunov Exponents from Data -- 5.6 Local Lyapunov Exponents -- 5.7 Local Lyapunov Exponents from Data -- 5.8 A Few Remarks About Lyapunov Exponents -- 6 Modeling Chaos -- 6.1 Model Making in Chaos -- 6.2 Local Models -- 6.3 Global Models -- 6.4 Phase Space Models for Dependent Dynamical Variables -- 6.5 'Black Boxes' and Physics -- 7 Signal Separation -- 7.1 General Comments -- 7.2 Full Knowledge of the Dynamics -- 7.3 Knowing a Signal: Probabilistic Cleaning -- 7.4 'Blind' Signal Separation -- 7.5 A Few Remarks About Signal Separation -- 8 Control and Chaos -- 8.1 Parametric Control to Unstable Periodic Orbits -- 8.2 Other Controls -- 8.3 Examples of Control -- 8.4 A Few (Irreverent) Remarks About Chaos and Control -- 9 Synchronization of Chaotic Systems -- 9.1 Identical Systems -- 9.2 Dissimilar Systems -- 9.3 Mutual False Nearest Neighbors -- 9.4 Predictability Tests for Generalized Synchronization -- 9.5 A Few Remarks About Synchronization -- 10 Other Example Systems -- 10.1 Chaotic Laser Intensity Fluctuations -- 10.2 Chaotic Volume Fluctuations of the Great Salt Lake -- 10.3 Chaotic Motion in a Fluid Boundary Layer -- 11 Estimating in Chaos: Cramér-Rao Bounds -- 11.1 The State Estimation Problem -- 11.2 The Cramér-Rao Bound -- 11.3 Symmetric Linear Dynamics -- 11.4 Arbitrary, Time-Invariant, Linear Systems -- 11.5 Nonlinear, Chaotic Dynamics -- 11.6 Connection with Chaotic Signal Separation -- 11.7 Conclusions -- 12 Summary and Conclusions -- 12.1 The Toolkit-Present and Future -- 12.2 Making 'Physics' out of Chaos-Present and Future -- 12.3 Topics for the Next Edition -- A.1 Information Theory and Nonlinear Systems -- A.2 Stability and Instability -- A.2.1 Lorenz Model -- References
Restricciones de acceso:
Use copy. Restrictions unspecified star. MiAaHDL
Detalles del sistema:
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL
Nota de acción:
digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL
Copyright/Depósito Legal:
625926403 853269824 958524303 1001479591 1012482162
ISBN:
9781461207634
1461207630
0387945237 ( hardcover ; alk. paper)
9780387945231 ( hardcover ; alk. paper)
0387983724 ( pbk.)
9780387983721 ( pbk.)
Materia:
Enlace a formato físico adicional:
Print version: Abarbanel, H.D.I. Analysis of observed chaotic data., New York : Springer, ©1996 (DLC) 95018641 (OCoLC)32469054
Punto acceso adicional serie-Título:
Institute for Nonlinear Science, 1431-4673

Localizaciones

Filtrar listado de centros

No hay coincidencias

Préstamo interbibliotecario

Seleccione el centro al que pertenece para solicitar la petición de préstamo de este documento.

Filtrar listado de centros

No hay coincidencias

Relacionados

Mismo Género

Misma Editorial y Colección