Descripción del título

In their review of the "Bayesian analysis of simultaneous equation systems", Dr~ze and Richard (1983) - hereafter DR - express the following viewpoint about the present state of development of the Bayesian full information analysis of such sys- tems i) the method allows "a flexible specification of the prior density, including well defined noninformative prior measures"; ii) it yields "exact finite sample posterior and predictive densities". However, they call for further developments so that these densities can be eval- uated through 'numerical methods, using an integrated software packa~e. To that end, they recommend the use of a Monte Carlo technique, since van Dijk and Kloek (1980) have demonstrated that "the integrations can be done and how they are done". In this monograph, we explain how we contribute to achieve the developments suggested by Dr~ze and Richard. A basic idea is to use known properties of the porterior density of the param- eters of the structural form to design the importance functions, i. e. approximations of the posterior density, that are needed for organizing the integrations
Monografía
monografia
Rebiun38235998
https://catalogo.rebiun.org/rebiun/record/Rebiun38235998
m o d
cr mnu---uuaaa
121227s1984 gw os 000 0 eng
934980633
1255225835
9783642455780
electronic bk.)
3642455786
electronic bk.)
9783540133841
3540133844
10.1007/978-3-642-45578-0
doi
AU@
000051691917
NZ1
14997776
NZ1
15618488
AU@
eng
pn
AU@
OCLCO
OCLCQ
GW5XE
OCLCF
UA@
COO
OCLCQ
OCLCO
EBLCP
OCLCQ
AU@
LEAUB
OCLCQ
OCLCO
UKAHL
OCLCO
OCLCQ
OCLCO
OCLCL
OCLCQ
KCA
bicssc
BUS069030
bisacsh
330.1
23
Bauwens, Luc
Bayesian Full Information Analysis of Simultaneous Equation Models Using Integration by Monte Carlo
by Luc Bauwens
Berlin, Heidelberg
Springer Berlin Heidelberg
1984
Berlin, Heidelberg
Berlin, Heidelberg
Springer Berlin Heidelberg
1 online resource (vi, 114 pages)
1 online resource (vi, 114 pages)
Text
txt
rdacontent
computer
c
rdamedia
online resource
cr
rdacarrier
Lecture Notes in Economics and Mathematical Systems
0075-8442
232
I. The Statistical Model -- 1.1 Notation -- 1.2 Interpretation -- 1.3 Likelihood function -- II. Bayesian Inference: The Extended Natural-Conjugate Approach -- II. 1 Two reformulations of the likelihood function -- II. 2 The extended natural-conjugate prior density -- II. 3 Posterior densities -- II. 4 Predictive moments -- II. 5 Numerical integration by importance sampling -- III. Selection of Importance Functions -- III. 1 General criteria -- III. 2 The AI approach -- III. 3 The AI approach -- IV. Report and Discussion of Experiments -- IV. 1 Report -- IV. 2 Conclusions -- V. Extensions -- V.I Prior density -- V.2 Nonlinear Models -- Conclusion -- Appendix A: Density Functions: Definitions, Properties And Algorithms For Generating Random Drawings -- A.I The matricvariate normal (MN) distribution -- A. II The inverted-Wishart (iW) distribution -- A. III The multivariate Student distribution -- A. IV The 2-0 poly-t distribution -- A.V The m-1 (0