Descripción del título

Context: Convolutional neural networks (CNNs) are currently used in a wide range of artificial intelligence applications. In many cases, these applications require the execution of the networks in real time on embedded devices. Hence the interest in these applications achieving excellent performance with low power consumption. CNNs perform operations between the input data and the network weights, with the particularity that there is no dependence between most of the operations. Thus, the inherent parallelism of Field Programmable Gate Arrays (FPGAs) can be used to perform multiple operations in parallel, maintaining the good performance per watt that characterizes these devices. This paper focuses on evaluating the convolution algorithm for a convolutional layer of neural networks by exploring parallelization directives using VIVADO HLS, and it aims to evaluate the performance of the algorithm using optimization directives. Method: The methodology consists of an exploration of the design space of a convolutional neural network layer implementation using VIVADO HLS. Performance verification of the FPGA was performed by comparing the output data with the same convolution algorithm implemented in MATLAB. A layer of the commercial version Xilinx DNNK was used as a reference for performance measurements of the different implementations obtained during the exploration of the design space. In this work, multiple variations of optimization directives are used, such as pipeline, array partition and unroll. Results: This paper presents the results of a reference implementation (without optimization directives) of the convolution algorithm concerning algorithm latency and the hardware resources used by the FPGA. The results are compared with the implementations of the algorithm, including different combinations of two optimization directives (pipeline and partition array). Conclusions: This work explores the design space of a convolution algorithm for a convolutional neural n
Contexto: Las redes neuronales convolucionales (CNNs) son actualmente utilizadas en una amplia gama de aplicaciones de inteligencia artificial. En muchos casos, dichas aplicaciones requieren la ejecución de las redes en tiempo real en dispositivos integrados. Por esto, el interés en que estas aplicaciones puedan alcanzar un buen desempeño con bajo consumo de potencia. Las CNNs realizan operaciones entre los datos de entrada y los pesos de la red, con la particularidad de que no existe dependencia entre la mayoría de las operaciones. Por tal motivo, el paralelismo inherente de los FPGAs puede ser usado para realizar múltiples operaciones en paralelo, manteniendo el buen desempeño por vatio que caracteriza a estos dispositivos. Este artículo se enfoca en la evaluación del algoritmo de convolución para una capa convolucional de redes neuronales explorando directivas de paralelización usando VIVADO HLS, y su objetivo es evaluar el desempeño del algoritmo utilizando directivas de optimización. Método: La metodología consiste en una exploración del espacio de diseño de la implementación de una capa de una red neuronal convolucional usando VIVADO HLS. La verificación del funcionamiento del FPGA fue realizada comparando los datos de salida con el mismo algoritmo de convolución implementado en MATLAB. Una capa de la versión comercial Xilinx DNNK fue usada como referencia para las medidas de desempeño de las diferentes implementaciones obtenidas en la exploración del espacio de diseño. En este trabajo se utilizan múltiples variaciones de directivas de optimización, tales como pipeline, array partition, y unroll. Resultados: Este trabajo presenta los resultados de una implementación de referencia (sin directivas de optimización) del algoritmo de convolución con respecto a la latencia del algoritmo y los recursos de hardware utilizados por la FPGA. Los resultados se comparan con implementaciones del algoritmo, incluyendo diferentes combinaciones de dos directivas de optimizació
Analítica
analitica Rebiun33855047 https://catalogo.rebiun.org/rebiun/record/Rebiun33855047 230421s2021 xx o 000 0 spa d https://dialnet.unirioja.es/servlet/oaiart?codigo=8076427 (Revista) ISSN 2344-8393 (Revista) ISSN 0121-750X S9M oai:dialnet.unirioja.es:ART0001477880 https://dialnet.unirioja.es/oai/OAIHandler 16 DGCNT S9M S9M dc Análisis de desempeño de capas de CNN para arquitecturas heterogéneas basadas en FPGAs usando HLS electronic resource] 2021 application/pdf Open access content. Open access content star Context: Convolutional neural networks (CNNs) are currently used in a wide range of artificial intelligence applications. In many cases, these applications require the execution of the networks in real time on embedded devices. Hence the interest in these applications achieving excellent performance with low power consumption. CNNs perform operations between the input data and the network weights, with the particularity that there is no dependence between most of the operations. Thus, the inherent parallelism of Field Programmable Gate Arrays (FPGAs) can be used to perform multiple operations in parallel, maintaining the good performance per watt that characterizes these devices. This paper focuses on evaluating the convolution algorithm for a convolutional layer of neural networks by exploring parallelization directives using VIVADO HLS, and it aims to evaluate the performance of the algorithm using optimization directives. Method: The methodology consists of an exploration of the design space of a convolutional neural network layer implementation using VIVADO HLS. Performance verification of the FPGA was performed by comparing the output data with the same convolution algorithm implemented in MATLAB. A layer of the commercial version Xilinx DNNK was used as a reference for performance measurements of the different implementations obtained during the exploration of the design space. In this work, multiple variations of optimization directives are used, such as pipeline, array partition and unroll. Results: This paper presents the results of a reference implementation (without optimization directives) of the convolution algorithm concerning algorithm latency and the hardware resources used by the FPGA. The results are compared with the implementations of the algorithm, including different combinations of two optimization directives (pipeline and partition array). Conclusions: This work explores the design space of a convolution algorithm for a convolutional neural n Contexto: Las redes neuronales convolucionales (CNNs) son actualmente utilizadas en una amplia gama de aplicaciones de inteligencia artificial. En muchos casos, dichas aplicaciones requieren la ejecución de las redes en tiempo real en dispositivos integrados. Por esto, el interés en que estas aplicaciones puedan alcanzar un buen desempeño con bajo consumo de potencia. Las CNNs realizan operaciones entre los datos de entrada y los pesos de la red, con la particularidad de que no existe dependencia entre la mayoría de las operaciones. Por tal motivo, el paralelismo inherente de los FPGAs puede ser usado para realizar múltiples operaciones en paralelo, manteniendo el buen desempeño por vatio que caracteriza a estos dispositivos. Este artículo se enfoca en la evaluación del algoritmo de convolución para una capa convolucional de redes neuronales explorando directivas de paralelización usando VIVADO HLS, y su objetivo es evaluar el desempeño del algoritmo utilizando directivas de optimización. Método: La metodología consiste en una exploración del espacio de diseño de la implementación de una capa de una red neuronal convolucional usando VIVADO HLS. La verificación del funcionamiento del FPGA fue realizada comparando los datos de salida con el mismo algoritmo de convolución implementado en MATLAB. Una capa de la versión comercial Xilinx DNNK fue usada como referencia para las medidas de desempeño de las diferentes implementaciones obtenidas en la exploración del espacio de diseño. En este trabajo se utilizan múltiples variaciones de directivas de optimización, tales como pipeline, array partition, y unroll. Resultados: Este trabajo presenta los resultados de una implementación de referencia (sin directivas de optimización) del algoritmo de convolución con respecto a la latencia del algoritmo y los recursos de hardware utilizados por la FPGA. Los resultados se comparan con implementaciones del algoritmo, incluyendo diferentes combinaciones de dos directivas de optimizació LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI Spanish Convolution convolutional neural network FPGA high-level synthesis optimization directives Convolución directivas de optimización FPGA red neuronal convolucional síntesis de alto nivel text (article) Guerra Londono, Mateo. cre Castano Londono, Luis Fernando. cre Alzate Anzola, Cristian Camilo. cre Márquez Viloria, David A. cre Velásquez Vélez, Ricardo Andrés. cre Ingeniería, ISSN 0121-750X, Vol. 26, Nº. 1, 2021 (Ejemplar dedicado a: January-April), pags. 62-76 Ingeniería, ISSN 0121-750X, Vol. 26, Nº. 1, 2021 (Ejemplar dedicado a: January-April), pags. 62-76 Ingeniería, ISSN 0121-750X, Vol. 26, Nº. 1, 2021 (Ejemplar dedicado a: January-April), pags. 62-76